
To determine the exclusion pressure Π�  , the experimental curve 
ΔΠ  as a function of Π� is fitted linearly as shown in Figure 2. The 
value of Π� corresponds to the surface pressure at which ΔΠ is 
equal to 0. For Π� < Π� , the protein is able to adsorb at the 
interface and causes an increase in additional surface pressure 
ΔΠ. When Π� > Π�  the protein can no longer adsorb at the 
interface.

The value of Π� obtained for this protein (23.8 mN/m) illustrates 
its high affinity for a monolayer of phospholipids. This Π� value is 
typical for penetrating proteins such as digestive lipases [7]. 
Other proteins, like lysozyme, have a Π� of only 11.9 mN/m when 
interacting with a monolayer of egg PC which indicates their 
weak affinity for this type of phospholipids [8].

INTRODUCTION

Lipid-molecule interactions are of crucial importance in many physiological and industrial processes. To better understand these 
mechanisms and quantify the affinity between a molecule and a lipid monolayer, its exclusion pressure is often determined [1-4].
Π�  corresponds to the surface pressure above which a molecule can no longer insert itself at an interface. The surface pressure Π is 
defined by: Π = ₀ - 
where ₀ represents the interfacial tension between two pure phases and  the measured tension.
According to D. Small's research group, Π� measures the ability of a peptide or protein to penetrate the polar heads and the aliphatic 
chains of a phospholipid monolayer [3].
Π� has been measured for a large number of molecules of interest at interfaces populated by lipids, phospholipids (Table 1). 
It is even possible to calculate this parameter for the same protein but at interfaces of various compositions. This is the case of GLTP 
(glycolipid transfer protein) whose Π� values vary with the charge of the phospholipids forming the monolayer [5]. The charge of the 
sub-phase can also significantly impact the affinity of a protein for an interface as is the case for the neuropeptide Y [6].

METHODOLOGY

Briefly, a drop of triolein of 20 µL is formed at the end of a J-
cannula immersed in a buffered solution (Hepes 20 mM pH7 NaCl, 
150 mM). The oil/water interface displays an interfacial tension 
γ_(o⁄w)=32 mN⁄m. A solution of liposomes (27.2 µL, 100 nm, 0.5 
mg/L) is added to the buffered solution. Phospholipids gradually 
adsorb at the oil/water interface, reducing the interfacial tension 
to values between 20-25 mN/m after 1 hour. The aqueous phase 
is replaced by a fresh buffered solution in order to remove the 
non-adsorbed phospholipids. The volume of the drop is increased 
or decreased by the Tracker™ drop tensiometer to reach a 
desired surface tension γi. This results in an interface with a 
surface pressure of Π� :

Π� =�� �−��

Then a solution containing the protein of interest is injected. 
Additional lowering of surface tension to a value of ���  caused 
by the protein leads to a new surface pressure noted Π�� :

Π��=�� �−���

The increase in surface pressure ΔΠ resulting from the injection 
of the protein can be written as:

ΔΠ = Π�� − Π�

When the addition of the protein doesn’t induce any surface 
pressure increase, that is to say that ΔΠ =0 mN⁄m, this means 
that the surface pressure Π�  is too high for the protein to adsorb 
at the interface. When ΔΠ =0 , Π�� = Π�.
The experiment is repeated at different Π�.

RESULTS
For each surface pressure Π�, corresponding to a given surface 
concentration of phospholipids, a solution containing the protein 
to be studied is injected. The addition of the protein causes a 
decrease in interfacial tension, reflecting its adsorption as 
illustrated in Figure 1.
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CONCLUSION

The oil drop tensiometer Tracker™ determines the exclusion pressure of a protein which is an indicator of its ability to penetrate an 
interface. Interfaces of the same chemical composition but of different surface concentrations are prepared with the Tracker™. The 
additional decrease of surface tension induced by the protein is an evidence of its incorporation into the interface. Above a critical value 
of surface pressure Π� , corresponding to the exclusion surface pressure Π�  , this adsorption is no longer possible and no further 
lowering of surface tension is observed (ΔΠ=0).
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Figure 1 : overview of an experiment to determine the surface 
pressure increment ΔΠ for one initial pressure Πi

Figure 2 : surface pressure increment ΔΠ as function of 
the initial surface pressure Πi
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Table 1 : exclusion pressures of molecules at lipid interfaces.

1 For the complete description of the interface model, refer to the corresponding articles.
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