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A B S T R A C T

In this work, we focused on the experimental arrangement of thermal wave imaging (TWI) methods for the
quantitative evaluation of non-uniform topcoat thickness of thermal barrier coatings (TBCs). Two TWI techni-
ques, pulsed thermography (PT) and lock-in thermography (LIT) were implemented on plasma sprayed TBCs
with varied topcoat ranging from 0.1mm to 0.6 mm. In PT, a short and high energy light pulse was applied on a
sample surface whereas, in LIT, the sample surface was excited by a sinusoidal heat flux at several modulation
frequencies ranging from 2Hz down to 0.01 Hz. Furthermore, an infrared camera was used to capture the surface
temperature of a thermal wave that propagated into the sample and the effect of the applied heat flux in both
techniques was analyzed by Fourier transform. The results of PT and LIT techniques were compared based on the
evaluated accuracy of each technique. Finally, it was concluded that both the techniques could be applied to the
fast and accurate evaluation of TBCs thickness.

1. Introduction

Thermal barrier coatings (TBCs) are complex, multifunctional thick
films of a refractory-oxide ceramic applied to the metallic surfaces of
hot section components to protect from wear, erosion and high-tem-
perature degradation, and to provide thermal insulation [1–3]. TBCs
are now being used to provide thermal insulation to metallic compo-
nents from the hot gas stream in gas-turbine engines used for aircraft
propulsion, power generation, and marine propulsion [4–6]. The state-
of-the-art TBCs consist of a yttria stabilized zirconia (YSZ) top coat, a
thin thermally grown oxide (TGO) reaction layer and a metallic bond
coat of MCrAIY on a superalloy substrate. The thermal insulation is
provided by the topcoat YSZ layer deposited by either electron beam
physical vapor deposition (EB-PVD) or plasma-spraying (PS) techniques
[7–10]. Hence, the topcoat thickness is an essential parameter which
determines the thermal insulation characteristics, stress, bonding
strength, lifetime of components, costs, etc., and is important for per-
formance evaluation [11–13]. Therefore, there is a need for non-
destructive testing (NDT) techniques to monitor and control the
thickness of coating.

Over the years, a variety of NDT techniques such as eddy current
[14–17], ultrasonic [18–21], x-ray fluorescence [22–25], and terahertz

[26–28] has been developed for the evaluation of coatings. The choice
among these techniques depends on the type of coatings, coating
thickness, the substrate, the cost of instrumentation and the accuracy
required [29,30]. However, these all have certain limitations such as;
eddy current suffers from manual scanning; ultrasonic suffers from size
and shape of the target object; x-ray is difficult to competent due to
porous nature of TBCs and terahertz suffers from the requirement of a
refractive index [31–34]. In this context, thermal wave imaging (TWI)
often known as infrared thermography (IR) becomes a research hotspot
in recent years as it has unique advantages of large detection area, fast
speed, non-contact, safe and convenient operation, more coating ma-
terials and high efficiency over other inspection methods [6,35–37].
Pulsed thermography (PT) [38–42] and lock-in thermography (LIT)
[43–47]are proved to be very appropriate NDT techniques for the
evaluation of TBCs [48–52].

In our previous work, hereafter Part I [53], results of a systematic
investigation of non-uniform TBCs using finite element model (FEM)
analysis were reported. In part I, a transient FEM model was developed
in ANSYS heat transfer module and stimulated by a flow of heat to
simulate PT and LIT experimental procedures. The sample considered
for the analysis was characterized by a steady substrate and the bond
coat with varied topcoat ranging from 0.1 mm to 0.6 mm. The response
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of the thermally excited surface was recorded and analyzed by Fourier
transform (FT) [54–56]. As results, we found that FEM enabled a better
understanding of PT and LIT and demonstrated potential in the eva-
luation of TBCs thickness. In order to extend our previous study and to
validate the FEM analysis results, we focused on the experimental ar-
rangement of PT and LIT techniques. In this work, we present the ex-
perimental results and discuss them together with the results from Part
I.

2. Materials and methods

2.1. Sample

Fig. 1 shows the schematic illustration of TBCs test sample along
with the geometry and the front side of the sample. Nickel-based su-
peralloy (180×180×4, in mm) plate was used a substrate. MCrAlY
alloys (M=Co, Ni, or Co/Ni) powder by air plasma spraying (APS)
process was sprayed onto the top surface of the substrate to form a bond
coat of 0.1 mm. Then topcoat of Yttria-stabilized zirconia (YSZ) by APS
process was applied to the bond coat surface. The thickness of topcoat
was maintained in the range of 0.1–0.6mm as shown in Fig. 1. The
emissivity of YSZ-TBCs was measured and is about 0.73 [57]. The de-
tails of nanomaterials used for the preparation of TBCs can be found in
the literature [58–61].

2.2. Pulse thermography (PT) experimental system

The PT system consisted of the power system, flash lamp, an in-
frared (IR) camera and a system controller. A power supply (BALCAR
Light System, Nexus A 6400, France) utilized a flash lamp (Universal
BALCAR, France) of power 6400W-s as a heat source to launch a pulse
of heat into the specimen surface. An IR camera (SC645, FLIR Systems,
Sweden) with a 640×480 – pixel resolution and a wavelength of
7.5–13 μmwas used to record the thermal response of the sample. An IR
lens with focal length 41.3mm was used together with the camera,
which was positioned in such a way that it would fully capture the
entire sample. The FLIR R&D software was used to acquire the thermal
images. The camera frame rate was set to 50 frames per second.

2.3. Lock-in thermography (LIT) experimental system

The LIT system consisted of a lock-in module, a heat source, an IR
camera, and a system controller [62–64]. A programmable function
generator (Agilent 33210A, Malaysia) was used for the generation of
sine waves. Two halogen lamps (OSRAM, Medium Flood, China) of
1 kW each were used as a heat source. The LIT system (Answer Tech,

Republic of Korea) was used to synchronize the input and output sig-
nals. The same infrared camera as specified in PT experimental system
was used for LIT experimental investigation.

3. Results and discussions

3.1. PT results

The PT experimental investigation was conducted in reflection
mode. The pulse heating time was set as 10ms followed by cooling time
of 5 s. Fig. 2 shows the surface temperature responses of TBCs with
respect to variation in thickness of topcoat. During the measurement of
temperature, a region of interest (ROI) was selected, and the tem-
perature of each pixel within the ROI was averaged to reduce the noise
and the errors in the measurement. Fig. 3 shows the pulsed thermal
images acquired at a different time interval. As can be seen in Figs. 2
and 3, the temperature rise was faster than its decay because of very
short impulse time. As the time passes, due to thermal diffusion in all
directions, the temperature on the sample surface tended to reach
equilibrium. It was also observed that the surface temperature was re-
latively high at large thickness.

The whole thermal data were processed by FT to compute phase
angle. Fig. 4 shows the computed phase image and Fig. 5 shows the plot
of phase angle with respect to variation in topcoat thickness. As can be
seen in Figs. 4 and 5, phase angle decreased with the increasing coating
thickness. However, notably in Part I, the phase angle increased with

Fig. 1. TBCs test sample description, (a) Schematic illustration of the sample along with the geometry and (b) Front side of the sample.

Fig. 2. PT Experimental surface temperature evolution curves of TBCs with
respect to variation in the thickness of topcoat.
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increasing coating thickness. It is due to the reason that the phase angle
computed with FT strongly depends on the number of thermal images
in sequence (number of harmonic) considered during processing. We
would like to emphasize the number of harmonic considered in Part I
was two, while all the thermal images of a sequence were considered in
this study.

The quadratic fitting with R-Square (R2)= 0.9976 and adj. R-
Square (aR2)= 0.9960 was adopted to express coating thickness as a
function of phase angle and is expressed as Eq. (1),

= − ∅ + ∅T 5.5418 3.2137 0.4522 2 (1)

3.2. LIT results

The LIT experimental investigation was conducted in reflection

mode for three complete excitation cycles at modulation frequencies of
2 Hz, 1 Hz, 0.5 Hz, 0.2 Hz, 0.1 Hz, 0.05 Hz, 0.02 Hz and 0.01 Hz. The
recorded thermal data from the 2nd excitation cycle was processed by
FT to compute phase angle for all the excitation frequencies. Fig. 6
shows the computed phase angle image. Fig. 7 shows the plot of coating
thickness and phase angle as a function of excitation frequency. As can
be seen in Figs. 6 and 7, phase angle decreased with the increasing
coating thickness. It was also found that the most appropriate excitation
frequency was found to be 0.02 Hz, since the higher phase difference
was obtained at this frequency. Hence, phase angle image at 0.02 Hz
was considered for the further analysis.

The quadratic fitting with R-Square (R2)= 0.9504 and adj. R-
Square (aR2)= 0.91642 was adopted to express coating thickness as a
function of phase angle and is expressed as Eq. (2),

= − ∅− ∅T 0.30247 0.14977 0.01039 2 (2)

Fig. 3. PT Experimental thermal images at different time interval, (a) time 0.01 s, (b) time 1 s, (c) time 2 s, (d) time 3 s, (e) time 4 s and (f) time 5 s.

Fig. 4. Phase image processed with FT from the experimental PT data.
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Fig. 5. Plot of coating thickness and phase angle for PT.
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3.3. Comparison of PT and LIT

The details of evaluated phase angle, predictive thickness and per-
centage error for each technique are summarized in Table 1. As can be
seen in Table 1, results indicate that phase angle decreased with the

increasing coating thickness for both PT and LIT techniques. The
thickness of the varied topcoat was evaluated by using Eqs. (1) and (2)
respectively for PT and LIT techniques. The percentage error was cal-
culated for the evaluated thickness. Results revealed that PT was found
to be more accurate than to LIT. However, error present in both tech-
niques was satisfactory and within the acceptable limit.

4. Conclusions

We supplemented our previous FEM analysis results on quantitative
evaluation of non-uniform TBCs thickness with new experimental re-
sults. The new experimental results together with the previous results
(Part I) showed that both the PT and LIT techniques could be applied to
the fast and accurate evaluation of TBCs thickness. It was found that the
differences in the temperature of thermal image and its corresponding
phase angle played a significant role in the evaluation of TBCs thick-
ness. PT and LIT technique were compared with each other based on the
evaluated accuracy of each technique. PT was found to be faster and
more accurate as compared to LIT. Particularly, for LIT, several ex-
citation frequencies ranging from 2Hz down to 0.01 Hz were explored,
and it was found that a frequency of 0.02 Hz provided a good result.
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Fig. 6. Phase images processed with the FT from the LIT experimental data at different modulation frequencies: (a) 2 Hz, (b) 1 Hz, (c) 0.5 Hz, (d) 0.2 Hz, (e) 0.1 Hz, (f)
0.05 Hz, (g) 0.02 Hz and (h) 0.01 Hz.

0.1 0.2 0.3 0.4 0.5 0.6

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

P
ha

se
 a

ng
le

 (r
ad

ia
n)

Coating thickness (mm)

   1.0 Hz
   0.5 Hz
   0.2 Hz
   0.1 Hz
 0.05 Hz
 0.02 Hz
 0.01 Hz

Fig. 7. Plot of coating thickness and phase angle as a function of modulation
frequency for LIT.

Table 1
Predicted coating thickness and error percentage.

Actual thickness (T) (mm) Pulsed thermography Lock-in thermography

Calculated∅ (radian) Predictive t (mm) Error (%) Calculated ∅ (radian) Predictiv t (mm) Error (%)

0.6 2.2527 0.5971 0.49 -1.4817 0.5485 8.58
0.5 2.3356 0.5026 0.52 -1.2944 0.5148 2.96
0.4 2.4268 0.4060 1.49 -1.0044 0.4641 16.01
0.3 2.5537 0.2839 5.35 0.2768 0.2617 12.77
0.2 2.6388 0.2103 5.14 0.7490 0.1960 1.98
0.1 2.7859 0.0984 1.65 1.3857 0.1151 15.14
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