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To analyze the role of sizing on carbon fibers and the mechanism of adhesion in CF/polymer matrix com-
posites, scanning electronic microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron
spectroscopy (XPS), and dynamic contact angle analysis (DCAA) were selected to characterize the differ-
ent properties between two types of sizings on carbon fiber CCF300. The results of surface roughness
obtained from SEM and AFM images showed that the sizings smooth the surface of CCF300. In addition,
the percentage of surface polar functional groups on sized CCF300 decreased slightly after sizing. In
another hand, the total surface energy and the polar component of surface energy of the sized CCF300
decreased slightly compared to the unsized CCF300, and the J4 sizing has the more influence.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Carbon fibers are widely used as reinforcements in composites,
especially in advanced composites [1–4]. Mechanical properties of
composites primarily depend on the fiber and matrix properties.
However, the fiber/matrix interfaces also play an important role
in controlling some of the mechanical properties of composites,
such as interlaminar shear strength and impact strength. A strong
interface can transfer the load efficiently from the matrix to the fi-
ber, resulting in stronger composites. A universal method to in-
crease the fiber/matrix adhesion is surface treatment included
oxidation in plasmas, oxidation in air, electrochemical oxidation,
and oxidation in nitric acid or phosphoric [5–10]. Surface treat-
ment increasing in the surface polarity or active sites for van der
Waals linking and hydrogen bonding can improve the interfacial
adhesion between the fiber and surrounding polymer matrix [8–
12]. After surface treatment, the fibers are generally sized or coated
with a polymer layer [13–15]. The function of sizing is still contro-
versial. Some scholars consider that the purpose of sizing is to in-
sert a polymer between the carbon fiber and the polymer matrix
and to use the properties of sizing to control the level of fiber/ma-
trix adhesion [16–18]. Others consider that sizing material usually
does not promote adhesion but is present to prevent fiber damage
during fiber handling in filament winding, prepregging and weav-
ing operations [19,20]. Otherwise, sizing has also been reported to
improve the wetting of fiber by the matrix resin so as to protect its
reactivity [21].
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This research aims at analyzing whether the sizing agent would
increase the surface roughness, numbers of surface reactive groups
and wettability of the carbon fiber, therefore enhancing the inter-
face properties of composite, while reducing the friction and pre-
venting fiber damage during subsequent textile processing. The
surface morphology and surface roughness of unsized and sized
carbon fibers were obtained by scanning electronic microscopy
(SEM) and atomic force microscopy (AFM). The surface composi-
tion and surface functional groups of fibers were examined by X-
ray photoelectron spectroscopy (XPS). Wettability studies were
carried out by the dynamic contact angle analysis (DCAA).

2. Materials and experimental

Polyacrylonitrile based carbon fibers CCF300 produced by Wei-
Hai TuoZhan fiber Co. Ltd. in China was used without and with J4
and A436 emulsion-type sizings. Whether sizing or not, all the car-
bon fibers in this research were had been subject to electrochem-
ical oxidation surface treatment before leaving the factory. The
main ingredients of sizings are modified epoxy resin. The J4 sizing
was obtained commercially from Toho in Japan and the A436 siz-
ing was supplied by Fudan University.

The unsized and sized CCF300 were analyzed using a Thermo
VG ESCALAB250 X-ray photoelectron spectrometer (XPS). The
spectra were collected using a Mg Ka X-ray source (1253.6 eV)
with a power of 300 W. The XPS data were fitted according to
Gaussian–Lorentzian function.

The SEM images of CCF300 with or without sizing were character-
ized by a LEO 1530 field emission scanning electronic microscopy.

Atomic force microscopy (AFM) measurements were performed
with a solver P47 pro instrument manufactured by NT-MDT Co. in
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Russia. A single carbon fiber was fastened to a steel sample mount
with double sided tape. All images were collected in air using the
tapping mode with a silicon nitride probe. Roughness analysis
was carried out from the images obtained over a 3 lm � 3 lm
area.

The surface energy (including dispersive cd
s and polar cp

s compo-
nents) measurements were performed on the carbon fibers using a
DCAT21 Dynamics Contact Angle Analyzer manufactured by Data
Physics Co. Four fibers about 20–25 mm were first bonded to a
double sided tape with proportional spacing and trimmed on one
side of fibers. Then the assembly was hung on the arm of the elec-
tronic balance. The DCAA experiments were preformed at a motor
speed of 8 lm/s and the fiber immersion depth of 5 mm with
deionized water, ethylene glycol and diiodomethane, respectively,
as the wetting medium. The liquids used and their surface free
energies are listed in Table 1. Ten separated results of tested fiber
samples were averaged to obtain one representative value. The
advancing contact angle was used to calculate the fiber surface en-
ergy according OWRK equation in SCAT software package supplied
by DataPhysics.
Table 1
Surface free energy characteristics of the liquids.

Liquid Source Purity

Deionized water – –
Ethylene glycol Jinke in Tianjin AR
Diiodomethane J&K Chemical Ltd. AR

Fig. 1. SEM images of carbon fibers surface. (a) Unsized CCF300; (b)
3. Results and discussion

3.1. Surface topography

Figs. 1 and 2 show the SEM and AFM images of unsized and
sized CCF300, respectively. SEM and AFM images consistently re-
veal that the sizing changes the surface topography on a micro-
scopic scale. The sizing increases fiber surface smoothness and
the longitudinal streaks on sized fibers become shallower, which
resulted from streaks on fiber surface were covered during the siz-
ing process. Increasing the fibers surface roughness could enhance
the mechanical interlocking [22]. Therefore, the smooth surface of
the samples after sizing has negative effect on mechanical
interlocking.

Table 2 summarizes the results of the roughness analysis of un-
sized and sized fibers as obtained from the AFM images. The results
indicate that the mean surface roughness value (Ra) is 88.493 nm
for the unsized CCF300 carbon fiber. The AFM images of sized car-
bon fibers show a slight decrease in roughness compared to the un-
sized carbon fiber. The Ra for the J4 and A436 sized carbon fibers
cd
s (mJ/m2) cp

s (mJ/m2) cT
s (mJ/m2)

28.25 43.35 71.50
31.19 16.27 47.46
49.24 0 49.24

sized CCF300 with J4 sizing; (c) sized CCF300 with A436 sizing.



Fig. 2. AFM images of carbon fibers surface. (a) Unsized CCF300; (b) sized CCF300 with J4 sizing; (c) sized CCF300 with A436 sizing.

Table 2
Surface roughness of unsized and sized CCF300 carbon fibers.

Samples Ra (nm) RMS (nm)

Unsized CCF300 88.493 109.446
Sized CCF300 with J4 sizing 71.698 99.257
Sized CCF300 with A436 sizing 58.877 77.016
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decreased slightly from 88.493 nm to 71.698 nm and from
88.493 nm to 58.877 nm, respectively. It may be a disadvantage
to interfacial adhesion between carbon fibers and a matrix resin
by decreasing the surface area (decreasing roughness) which may
provide less points of contact between the fiber and the matrix.

3.2. Surface composition

The surface composition of unsized and sized carbon fibers was
determined by XPS and the results are given in Table 3. Values of
Table 3
XPS surface composition of unsized and sized CCF300 carbon fibers.

Samples C1s O1s N1

BE (eV) AC (%) BE (eV) AC (%) BE

Unsized CCF300 285.0 67.25 532.6 20.2 40
Sized CCF300 with J4 285.0 75.81 532.7 18.81 –
Sized CCF300 with A436 285.0 72.73 533.0 20.3 –
the binding energy (BE) and the atomic concentration (AC) are
listed for each photopeak. The unsized CCF300 surface is composed
of carbon, oxygen, nitrogen, sulfur and silicon. The J4 and A436
sized CCF300 carbon fibers contain these same elements except
nitrogen.

Fig. 3a–c shows typical XPS C1s fitting curve spectra for unsized
and sized CCF300 carbon fibers. The percentages of functional
groups (CAOH or CAOR; C@O) on unsized and sized carbon fibers
were estimated from these fitting curve C1s photopeaks and are
listed in Table 4. Values of the binding energy (BE) and the percent
contribution (PC) of each curve fitting photopeak to the total C1s
photopeak are summarized in Table 4. The functional groups
CAOH and C@O were detected on all unsized and sized carbon fi-
bers. The percentage of functional groups containing oxygen de-
creased for both J4 and A436 sized carbon fibers when compared
to the unsized carbon fiber, because the CCF300 carbon fiber had
obtained electrolytic surface treatment to increase amount of sur-
face active functional groups containing oxygen before sizing in
s S2p Si2p

(eV) AC (%) BE (eV) AC (%) BE (eV) AC (%) O/C

0.9 3.17 168.6 1.32 103.2 8.06 0.30
– 168.9 1.32 102.6 4.05 0.25
– 170.2 1.74 102.8 5.23 0.28



Fig. 3. Curve fitting C1s photoelectron peaks of carbon fibers. (a) Unsized CCF300; (b) sized CCF300 with J4 sizing; (c) sized CCF300 with A436 sizing.
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CCF300 carbon fiber production line. The covered sizing layer with
less active functional groups containing oxygen on the carbon fi-
bers will decrease numbers of the surface active sites. Meanwhile,
it is generally accepted that the functional groups containing oxy-
gen are acidic [23,24], and the acidic filler have better adhesion
Table 4
XPS C1s curve fitting results of unsized and sized carbon fibers.

Samples Peak 1

ACAC or ACAH

BE (eV) PC (%)

Unsized CCF300 285.0 53.43
Sized CCF300 with J4 285.0 63.38
Sized CCF300 with A436 285.0 62.12

Table 5
Carbon fiber surface energies and contact angles in different liquids.

Samples Contact angle (�)

Deionized water Glycol

Unsized CCF300 55.80 32.99
Sized CCF300 with J4 76.09 42.41
Sized CCF300 with A436 61.58 39.57
strength with epoxy matrix than those of basic fillers for Lewis
acid-basic interactions since the polar component of the epoxy re-
sin is basic [8,10,25]. So, it is reasonable that the decreased func-
tional groups containing oxygen on sized carbon fibers are
disadvantage to the fiber/matrix adhesion. It has been suggested
Peak 2 Peak 3

ACAOH or ACAOR AC@O

BE (eV) PC (%) BE (eV) PC (%)

286.2 26.66 287.2 19.91
286.6 29.33 287.1 7.29
286.5 20.10 287.0 17.78

OWRK surface energy (mN/m)

Diiodomethane cT
s cd

s cp
s

40.05 47.54 29.88 17.66
36.40 41.02 35.40 5.62
26.19 46.18 33.57 12.61
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that the surface treatment surface treatment has more pronounced
effect on improving the interfacial strength than the sizing in Refs.
[13,26].

3.3. Surface free energy analysis

The surface free energy is a strong gage of solid surface, and
adhesion strength between fibers and matrix is predominantly af-
fected by the surface free energy of fibers [25]. The total surface en-
ergy (cT

s ) of the fibers was estimated as sum of the dispersive or
London component (cd

s ) and the polar components (cp
s ) [27]. Owens

and Wendt [28] consider that the interfacial tension of solid/liquid
contact phase can be formulated by the following equations:

csl ¼ cs þ cl � 2ðcd
s c

d
l Þ

1=2 � 2ðcp
s c

p
l Þ

1=2 ð1Þ
cs ¼ cd

s þ cp
s ; cl ¼ cd

l þ cp
l ð2Þ

By applying the Young’s equation, the following equation can be
deduced:

clð1þ cos hÞ ¼ 2ðcd
s c

d
l Þ

1=2 þ 2ðcp
s c

p
l Þ

1=2 ð3Þ
cos h ¼ F=Pcsl ð4Þ

where subscript s, l and sl are the shortening of solid, liquid and so-
lid/liquid interface, respectively, h is the contact angle at solid/li-
quid interface, F is the wetting force at the solid/liquid interface, P
is the wetting perimeter. Measured wetting forces from DCAA were
used to calculate contact angles h from Eq. (4), knowing csl and P.

According OWRK method, measured contact angles of two
types of liquid (knowing cl; cd

l ; c
p
l ) on fiber surface, respectively,

then the dispersive (cd
s ) and the polar (cp

s ) components of the fiber
surface energies were calculated from Eq. (3). The results for the
surface energies, contact angles in different liquids of unsized
and sized carbon fibers are presented in Table 5. It is clear that
the total surface energy decreases slightly and the dispersive com-
ponent (cd

s ) increases slightly for sized carbon fibers CCF300,
respectively. However, there is a distinct decrease in the polar
component (cp

s ) for the two types of sized carbon fiber when com-
pared to the unsized fiber.

The percentage of surface functional groups containing oxygen
on the unsized fiber is higher than ones on sized fibers as shown
in Fig. 4. So, the decrease in total surface energy and its polar com-
ponent appears to be due to the decrease in the percentage of sur-
face polar functional groups (CAOH or CAOR; C@O) for both sized
fibers. In fact, an approximately linear relationship can be obtained
between polar component of the surface energy and oxygen content
Fig. 4. The percentage of functional groups of unsized and sized CCF300 carbon
fibers.
(the O/C atomic ratio) on the surface of carbon fibers [11]. The polar
component is a governing factor in the adhesion between the fibers
and the epoxy matrix [25], because the percentage of surface active
functional groups (CAOH or CAOR; C@O) increases the possibility of
forming a chemical bond between fiber and matrix [24–26]. Mean-
while, an increase in the surface polarity or active sites for van der
Waals linking and hydrogen bonding can improve the interfacial
adhesion between the fiber and the surrounding polymer matrix,
leading to better stress transfer from the matrix to the fiber materi-
als [11,29]. Therefore, the decreased surface energy, especially the
polar component of surface energy on carbon fiber’s surface after
sizing suppresses surface wettability or even decreases the interfa-
cial adhesion between fiber and matrix possibly.
4. Conclusions

The results of this study revealed that the surface characteris-
tics of carbon fiber significantly changed after sizing. The SEM
and AFM images showed that both the size of streaks on the sized
carbon fibers and surface roughness decreased. XPS results proved
that the amount of surface functional groups containing oxygen
and the ratio of oxygen to carbon decreased. Dynamic contact an-
gle analysis results indicated that the sized carbon fibers had a
lower total surface energy and the polar components of surface en-
ergy decreased as well, compared with the unsized carbon fiber,
which proved the XPS result of the decrease on the amount of sur-
face functional groups containing oxygen after sizing.

Surface roughness, surface active functional groups and surface
energy are of great importance to adhesion of carbon fiber/matrix
interface. The decreases on the surface roughness, amount of sur-
face active functional groups and surface energy contributed neg-
ative effect to adhesion of carbon fiber/matrix interface. All the
results indicated that the main role of sizing was not to increase
the interfacial adhesion between fiber and matrix, and the sizing
for carbon fiber could serve a lubricant to prevent fiber damage
during subsequent textile processing such as weaving and prepreg
processing [19,20], while being compatible with the matrix resin
and not obviously decreasing the fiber/matrix interface adhesion.
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